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1. Introduction and Objective

Mixed-stock analysis (MSA) has long been used to apportion harvests. 
Initially, MSA relied solely on phenotypic characteristics, behavioral 
patterns, and physical tags, but, with the advent of allozyme analysis, 
has shifted to genetic data. Currently, a wide range of molecular tools 
are available for use in MSA studies, some of which access highly 
polymorphic loci (e.g. microsatellites). The use of highly variable loci for 
MSA in turn prompted the development of new statistical methods to deal 
with the increased variation.

In this study, we use allozyme, microsatellite, and amplifi ed fragment 
length polymorphism (AFLP) data, collected from Yukon River chum 
salmon populations, to compare the performance of the statistical 
methods.

2. Methods

Populations and identifi ed structure

Sample sizes for the above populations range between 75 and 96. Data 
from 17 allozyme loci, 11 microsatellite loci, and 28 AFLP loci have been 
collected for these populations. The population structure depicted above is 
supported by all marker classes.

Create mixtures

First, we simulated mixtures for analysis. Mixtures were simulated by 
randomly drawing from the multinomial distribution with N equal to the 
mixture sample size and the probabilities equal to the specifi ed mixture 
composition; individual multilocus genotypes were simulated by sampling 
with replacement pairs of alleles at each locus using the observed baseline 
allele/phenotype frequencies, and assumptions of Hardy-Weinberg and 
gametic phase equilibrium.

Mixtures with 0, 20, 40, 60, 80, and 100% contribution of Canadian 
border chum salmon (Fishing Branch and Big Creek) were created 
for each marker class. This is called an accuracy graph and allows for 
determining the performance of apportionment over a range of mixture 
scenarios. These populations were selected because the ability to identify 
Canadian origin fi sh is important for meeting Pacifi c Salmon Treaty 
mandates. Twenty fi ve mixtures were simulated for each increment for a 
total of 150 mixtures per marker class. The computational time associated 
with Bayesian mixture modeling prevented analysis of > 25 mixtures per 
increment.

Analyze mixtures

Mixtures were then analyzed using the maximum likelihood (ML) and 
Bayesian mixture modeling methods, as implemented in the computer 
programs SPAM 3.7 and Bayes, respectively.

For the ML approach, AFLP and allozymes were analyzed based on 
their observed allele/phenotype frequencies. To control the problem 
of sampling zeros, the microsatellites were analyzed after their allele 
frequencies were adjusted with the Rannala-Mountain Bayesian estimator.

Statistically test mixture estimates

The mixture estimates were then statistically tested (sign test) to 
determine which apportionment method produced estimates that were 
closer to the expected. Each mixture was analyzed by both the ML and 
Bayesian method to ensure that differences between estimates were the 
result of the statistical method. 

= estimate signifi cantly closer to the expected (p<0.05)
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4. Conclusions

For microsatellites, Bayesian mixture modeling gave the best MSA re-
sults. The large bias for microsatellites using the ML method and dis-
crepancies between mixture estimation and mixture simulation results 
(simulation results not shown) emphasizes the benefi ts and appropri-
ateness of the Bayesian method for highly variable markers.

For moderately variable markers, there was not a dramatic improve-
ment of the Bayesian method over ML. Bayesian does better at the ex-
treme ranges of mixture contributions, but not necessarily in the mid-
dle, which suggests that the Bayesian method is not adversely affected 
by estimates being constrained between 0 and 1 as is the ML method.


